Lecture 17 14.7 Extreme values and saddle points

Jeremiah Southwick

March 1, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Upcoming dates: Monday: Quiz 8 and WF drop date (see grade calculation sheet on Blackboard) Wednesday, March 6: Review Friday, March 8: Exam 2

Last class

Then the equation of the plane tangent to f(x, y) at (a, b, f(a, b)) is

$$f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z - f(a,b)) = 0.$$

Solving for z, we have

$$z = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tangent plane example

$$z = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b).$$

Example

Find the tangent plane to $z = x \cos(y) - ye^x$ at $(\ln(2), 0, \ln(2))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tangent plane example

$$z = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b).$$

Example

Find the tangent plane to $z = x \cos(y) - ye^x$ at $(\ln(2), 0, \ln(2))$. We have $\nabla f = \langle \cos(y) - ye^x, -x \sin(y) - e^x \rangle$ and thus the equation is

$$(x - \ln(2)) + (-2)(y - 0) - (z - \ln(2)) = 0$$

or

$$z=x-2y.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Just as we used derivatives in Calculus 1 to find extreme values of single variable functions, we can use derivatives to do the same with multivariable functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Just as we used derivatives in Calculus 1 to find extreme values of single variable functions, we can use derivatives to do the same with multivariable functions.

Definition

Let (a, b) be in the domain of f(x, y). We say

1. f(a, b) is a <u>local maximum</u> of f if $f(a, b) \ge f(x, y)$ for all points (x, y) in the domain of f near (a, b).

Just as we used derivatives in Calculus 1 to find extreme values of single variable functions, we can use derivatives to do the same with multivariable functions.

Definition

Let (a, b) be in the domain of f(x, y). We say

1. f(a, b) is a <u>local maximum</u> of f if $f(a, b) \ge f(x, y)$ for all points (x, y) in the domain of f near (a, b).

2. f(a, b) is a <u>local minimum</u> of f if $f(a, b) \le f(x, y)$ for all points (x, y) in the domain of f near (a, b).

Just as we used derivatives in Calculus 1 to find extreme values of single variable functions, we can use derivatives to do the same with multivariable functions.

Definition

Let (a, b) be in the domain of f(x, y). We say

1. f(a, b) is a <u>local maximum</u> of f if $f(a, b) \ge f(x, y)$ for all points (x, y) in the domain of f near (a, b). 2. f(a, b) is a <u>local minimum</u> of f if $f(a, b) \le f(x, y)$ for all

points (x, y) in the domain of f near $(a, b) \leq r(x, y)$

Example

The function $f(x, y) = x^2 + y^2$ has a local min at (0, 0).

First derivative test

Theorem

If f(x, y) has a local min or max at (a, b) and $f_x(a, b)$, $f_y(a, b)$ are defined, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$. Another way to say this is $\nabla f(a, b) = \vec{\mathbf{0}}$.

First derivative test

Theorem

If f(x, y) has a local min or max at (a, b) and $f_x(a, b)$, $f_y(a, b)$ are defined, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$. Another way to say this is $\nabla f(a, b) = \vec{0}$.

We can see this is true by looking in the x- and y-directions and using Calculus 1.

First derivative test

Theorem

If f(x, y) has a local min or max at (a, b) and $f_x(a, b)$, $f_y(a, b)$ are defined, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$. Another way to say this is $\nabla f(a, b) = \vec{0}$.

We can see this is true by looking in the x- and y-directions and using Calculus 1.

Definition

A point (a, b) in the domain of f is a <u>critical point of f</u> if $f_x(a, b) = 0 = f_y(a, b)$ or if $f_x(a, b)$ or $\overline{f_y(a, b)}$ is undefined.

Extreme value example

Example Let $f(x, y) = x^2 + y^2 - 4y + 9$. Find all extreme values of the function.

Extreme value example

Example

Let $f(x, y) = x^2 + y^2 - 4y + 9$. Find all extreme values of the function.

Extreme values only happen when $\nabla f(a, b) = \langle 0, 0 \rangle$, so we calculate ∇f and set each component equal to 0.

$$\nabla f = \langle 2x, 2y - 4 \rangle.$$

Extreme value example

Example

Let $f(x, y) = x^2 + y^2 - 4y + 9$. Find all extreme values of the function.

Extreme values only happen when $\nabla f(a, b) = \langle 0, 0 \rangle$, so we calculate ∇f and set each component equal to 0.

$$\nabla f = \langle 2x, 2y - 4 \rangle.$$

This gives the equations 2x = 0 and 2y - 4 = 0 or x = 0, y = 2. Thus there MIGHT be an extreme value of f at (0,2). At this point, $f(0,2) = 0 + 2^2 - 4(2) + 9 = 5$. Can we tell if this is a local max or a local min?

$$f(x,y) = x^{2} + (y-2)^{2} + 5 \ge 0 + 0 + 5 = 5$$

So (0,2) is a local min since the function is always higher than height 5.

Example Let $f(x, y) = y^2 - x^2$. Find all extreme values of f.

Example

Let $f(x, y) = y^2 - x^2$. Find all extreme values of f. We have $f_x = -2x$ and $f_y = 2y$. Setting these equal to 0 gives x = 0 and y = 0. So (0, 0) is a critical point and f(0, 0) = 0MIGHT be an extreme value of f. Can we tell if this height is a local max or a local min?

Example

Let $f(x, y) = y^2 - x^2$. Find all extreme values of f. We have $f_x = -2x$ and $f_y = 2y$. Setting these equal to 0 gives x = 0 and y = 0. So (0, 0) is a critical point and f(0, 0) = 0MIGHT be an extreme value of f. Can we tell if this height is a local max or a local min?

Choose a path where f looks like a max at (0,0):

along
$$y = 0$$
: $f(x, 0) \le 0 = f(0, 0)$

Choose a path where f looks like a min at (0, 0):

along
$$x = 0$$
: $f(0, y) = y^2 \ge 0 = f(0, 0)$

Example

Let $f(x, y) = y^2 - x^2$. Find all extreme values of f. We have $f_x = -2x$ and $f_y = 2y$. Setting these equal to 0 gives x = 0 and y = 0. So (0, 0) is a critical point and f(0, 0) = 0MIGHT be an extreme value of f. Can we tell if this height is a local max or a local min?

Choose a path where f looks like a max at (0,0):

along
$$y = 0$$
 : $f(x, 0) \le 0 = f(0, 0)$

Choose a path where f looks like a min at (0, 0):

along
$$x = 0$$
: $f(0, y) = y^2 \ge 0 = f(0, 0)$

So (0,0) is neither a local min nor a local max.

Saddle points

Definition

f(x, y) has a saddle point at a critical point (a, b) if (a, b) isn't a local max and (a, b) isn't a local min. The point (a, b, f(a, b)) is called a saddle point.

Saddle points

Definition

f(x, y) has a saddle point at a critical point (a, b) if (a, b) isn't a local max and (a, b) isn't a local min.

The point (a, b, f(a, b)) is called a saddle point.

In general, critical values don't come in nice cookie-cutter ways that allow us to easily figure out whether the points are local extrema or saddle points. But there is a test we can use to determine what MOST critical values are.