Lecture 17
 14.7 Extreme values and saddle points

Jeremiah Southwick

March 1, 2019

Things to note

Upcoming dates:
Monday: Quiz 8 and WF drop date (see grade calculation sheet on Blackboard)
Wednesday, March 6: Review
Friday, March 8: Exam 2

Last class

Then the equation of the plane tangent to $f(x, y)$ at $(a, b, f(a, b))$ is

$$
f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)-(z-f(a, b))=0 .
$$

Solving for z, we have

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Tangent plane example

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Example
Find the tangent plane to $z=x \cos (y)-y e^{x}$ at $(\ln (2), 0, \ln (2))$.

Tangent plane example

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Example
Find the tangent plane to $z=x \cos (y)-y e^{x}$ at $(\ln (2), 0, \ln (2))$.
We have $\nabla f=\left\langle\cos (y)-y e^{x},-x \sin (y)-e^{x}\right\rangle$ and thus the equation is

$$
(x-\ln (2))+(-2)(y-0)-(z-\ln (2))=0
$$

or

$$
z=x-2 y
$$

14.7 Extreme values

14.7 Extreme values

Just as we used derivatives in Calculus 1 to find extreme values of single variable functions, we can use derivatives to do the same with multivariable functions.

14.7 Extreme values

Just as we used derivatives in Calculus 1 to find extreme values of single variable functions, we can use derivatives to do the same with multivariable functions.

Definition
Let (a, b) be in the domain of $f(x, y)$. We say

1. $f(a, b)$ is a local maximum of f if $f(a, b) \geq f(x, y)$ for all points (x, y) in the domain of f near (a, b).

14.7 Extreme values

Just as we used derivatives in Calculus 1 to find extreme values of single variable functions, we can use derivatives to do the same with multivariable functions.

Definition

Let (a, b) be in the domain of $f(x, y)$. We say

1. $f(a, b)$ is a local maximum of f if $f(a, b) \geq f(x, y)$ for all points (x, y) in the domain of f near (a, b).
2. $f(a, b)$ is a local minimum of f if $f(a, b) \leq f(x, y)$ for all points (x, y) in the domain of f near (a, b).

14.7 Extreme values

Just as we used derivatives in Calculus 1 to find extreme values of single variable functions, we can use derivatives to do the same with multivariable functions.

Definition

Let (a, b) be in the domain of $f(x, y)$. We say

1. $f(a, b)$ is a local maximum of f if $f(a, b) \geq f(x, y)$ for all points (x, y) in the domain of f near (a, b).
2. $f(a, b)$ is a local minimum of f if $f(a, b) \leq f(x, y)$ for all points (x, y) in the domain of f near (a, b).

Example
The function $f(x, y)=x^{2}+y^{2}$ has a local min at $(0,0)$.

First derivative test

Theorem
If $f(x, y)$ has a local min or max at (a, b) and $f_{x}(a, b), f_{y}(a, b)$ are defined, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$. Another way to say this is $\nabla f(a, b)=\overrightarrow{\mathbf{0}}$.

First derivative test

Theorem
If $f(x, y)$ has a local min or max at (a, b) and $f_{x}(a, b), f_{y}(a, b)$ are defined, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$. Another way to say this is $\nabla f(a, b)=\overrightarrow{\mathbf{0}}$.
We can see this is true by looking in the x - and y-directions and using Calculus 1 .

First derivative test

Theorem
If $f(x, y)$ has a local min or max at (a, b) and $f_{x}(a, b), f_{y}(a, b)$ are defined, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$. Another way to say this is $\nabla f(a, b)=\overrightarrow{\mathbf{0}}$.
We can see this is true by looking in the x - and y-directions and using Calculus 1.

Definition

A point (a, b) in the domain of f is a critical point of f if $f_{x}(a, b)=0=f_{y}(a, b)$ or if $f_{x}(a, b)$ or $f_{y}(a, b)$ is undefined.

Extreme value example

Example

Let $f(x, y)=x^{2}+y^{2}-4 y+9$. Find all extreme values of the function.

Extreme value example

Example

Let $f(x, y)=x^{2}+y^{2}-4 y+9$. Find all extreme values of the function.
Extreme values only happen when $\nabla f(a, b)=\langle 0,0\rangle$, so we calculate ∇f and set each component equal to 0 .

$$
\nabla f=\langle 2 x, 2 y-4\rangle
$$

Extreme value example

Example

Let $f(x, y)=x^{2}+y^{2}-4 y+9$. Find all extreme values of the function.
Extreme values only happen when $\nabla f(a, b)=\langle 0,0\rangle$, so we calculate ∇f and set each component equal to 0 .

$$
\nabla f=\langle 2 x, 2 y-4\rangle
$$

This gives the equations $2 x=0$ and $2 y-4=0$ or $x=0, y=2$. Thus there MIGHT be an extreme value of f at $(0,2)$. At this point, $f(0,2)=0+2^{2}-4(2)+9=5$. Can we tell if this is a local max or a local min?

$$
f(x, y)=x^{2}+(y-2)^{2}+5 \geq 0+0+5=5
$$

So $(0,2)$ is a local min since the function is always higher than height 5 .

Another example

Example
Let $f(x, y)=y^{2}-x^{2}$. Find all extreme values of f.

Another example

Example
Let $f(x, y)=y^{2}-x^{2}$. Find all extreme values of f.
We have $f_{x}=-2 x$ and $f_{y}=2 y$. Setting these equal to 0 gives $x=0$ and $y=0$. So $(0,0)$ is a critical point and $f(0,0)=0$ MIGHT be an extreme value of f. Can we tell if this height is a local max or a local min?

Another example

Example

Let $f(x, y)=y^{2}-x^{2}$. Find all extreme values of f.
We have $f_{x}=-2 x$ and $f_{y}=2 y$. Setting these equal to 0 gives $x=0$ and $y=0$. So $(0,0)$ is a critical point and $f(0,0)=0$ MIGHT be an extreme value of f. Can we tell if this height is a local max or a local min?

Choose a path where f looks like a max at $(0,0)$:

$$
\text { along } y=0: f(x, 0) \leq 0=f(0,0)
$$

Choose a path where f looks like a min at $(0,0)$:

$$
\text { along } x=0: f(0, y)=y^{2} \geq 0=f(0,0)
$$

Another example

Example

Let $f(x, y)=y^{2}-x^{2}$. Find all extreme values of f.
We have $f_{x}=-2 x$ and $f_{y}=2 y$. Setting these equal to 0 gives $x=0$ and $y=0$. So $(0,0)$ is a critical point and $f(0,0)=0$ MIGHT be an extreme value of f. Can we tell if this height is a local max or a local min?

Choose a path where f looks like a max at $(0,0)$:

$$
\text { along } y=0: f(x, 0) \leq 0=f(0,0)
$$

Choose a path where f looks like a min at $(0,0)$:

$$
\text { along } x=0: f(0, y)=y^{2} \geq 0=f(0,0)
$$

So $(0,0)$ is neither a local min nor a local max.

Saddle points

Definition
$f(x, y)$ has a saddle point at a critical point (a, b) if (a, b) isn't a local max and (a, b) isn't a local min.
The point $(a, b, f(a, b))$ is called a saddle point.

Saddle points

Definition

$f(x, y)$ has a saddle point at a critical point (a, b) if (a, b) isn't a local max and (a, b) isn't a local min.
The point $(a, b, f(a, b))$ is called a saddle point.
In general, critical values don't come in nice cookie-cutter ways that allow us to easily figure out whether the points are local extrema or saddle points. But there is a test we can use to determine what MOST critical values are.

